

Scalability in Analysis of Software Architecture

Michael E. Shin Bosah Chukwuogo Marta E. Calderón
 Dept. of Computer Science Dept. of Computer Science Computer Science Department
 Texas Tech University Texas Tech University University of Costa Rica

 Lubbock, TX 79409-3104 Lubbock, TX 79409-3104 San Pedro, Costa Rica
 Michael.Shin@ttu.edu bosah.chukwuogo@ttu.edu mcalderon@ecci.ucr.cr

Abstract

This paper describes the scalability issue in the
analysis of the software architecture with the Colored
Petri Net (CPN), which is transformed from the Unified
Modeling Language (UML) based software architecture
for large-scale application systems. In this paper, the
software architecture for an application system is modeled
using the UML first, and then it is transformed into a
hierarchical CPN model that is executable. Dynamic
properties, such as deadlock, of the software architecture
for a system are analyzed using the executable CPN
model at the levels of different abstraction of components
so as to reduce the complexity of the analysis. The ATM
system is used to demonstrate the approach.

1. Introduction

As the Unified Modeling Language (UML)
[Booch05, Rumbaugh05] becomes an industry wide
standardized notation for object-oriented software
development, the software architectures for application
systems have been specified in the UML notation. The
UML-based software architectures for applications need
to be analyzed in terms of dynamic behavior of the
systems, such as correctness and performance. However,
the UML-based software architecture models are not
executable so that the dynamic properties can not be
analyzed.

The software architectures with the UML for
application systems have been transformed into the
Colored Petri Net (CPN) [Kristensen98] models in order
to evaluate dynamic behavior of the systems. This is
because the CPN models can be evaluated by powerful
analysis tools, such as the CPNTools [CPNTools07] and
Design/CPN [DesignCPN04]. The CPN analysis tools can
quickly not only show that a CPN model behaves in the
desired manner, but also check several properties, such as
boundedness properties, home and liveness properties,
and fairness properties. In particular, the concurrency
properties of applications, such as deadlock, are evaluated
using the occurrence graph and state space report
generated by the CPN analysis tools. The occurrence
graph traces all possible system states that can be reached

by the system so as to check whether the system frees
from deadlock. A deadlock-free system ensures that the
system is not suspended indefinitely.

However, the CPN analysis tools may not be fit or may
fail to analyze large-scale application systems within a
reasonable time due to the limited resource. The CPN
analysis tools generate all the possible system states for a
CPN model, and trace them to check the desired
properties. As a system becomes larger, the tools need to
generate and trace more system states. This makes it
difficult for the tools to finish the analysis within a
reasonable time or fall into failure of the analysis. Thus,
scalability of the analysis of CPN models needs to be
considered in transforming the large-scale software
architectural models to the corresponding CPN models.

This paper describes development of the CPN model
transformed from the software architecture model with the
UML for a large-scale application system by considering
the scalability of the analysis of the CPN model. The
software architecture for a system, modeled with the
UML, is evaluated using the CPN model in terms of the
concurrency properties such as deadlock as well as the
correctness of message communication among concurrent
components constituting the software architecture as well
as concurrent objects supporting each component. To do
this, the software architecture for a system, modeled with
the UML, is transformed into the corresponding software
architecture, modeled with the CPN, which has a
hierarchical structure in order to reduce the complexity of
flat structure. In addition, the software architecture for a
system is analyzed using the transformed CPN model at
the levels of different abstraction of components.

This paper begins by describing the related work in
section 2. Section 3 describes the overview of our
approach. Section 4 describes the message
communication for software architecture. Section 5
describes the model transformation for software
architecture Section 6 describes analysis of software
architecture. Section 7 concludes this paper.

2. Related Work

Related work addresses scalability in the analysis of
software system models using the CPN model in terms of

software requirements and software architecture.
[Baresi97] proposes a technique based on a formalism

to define the mapping from front-end informal
(specification) notations to formal models. The semantics
underlying the mapping is defined by means of sets of
rules, and can be tailored to the working environment.
The approach proposed in [Baresi97] is concerned with
customizability of structured analysis-oriented models,
thus allowing semantics to be adapted to the needs of the
application systems.

 [Elkoutbi98, Elkoutbi00] presents the CPN model
transformed from the UML model as two levels of
abstraction – the use case level and scenario level. Each
use case is mapped to a place at the use case level that has
a special place, “Begin,” modeling the entry of the
system. A use case is decomposed into sub-use cases
using “use” relationships among use cases in the use case
model. For each decomposed use case, a table is
constructed at the scenario level to describe object states
associated with scenarios, and then a whole CPN model is
produced by merging all scenarios of each use case using
an algorithm for scenario integration.

In [Saldhana00, Saldhana01], an Object Petri Nets
model of a system is developed from the statechart model
and collaboration model of the UML. The system is
specified in the center of the statechart model where the
statechart model describes states and their transitions in
response to events to objects. States in the statechart
model are mapped onto Petri Net places and state
transitions are mapped onto Petri Net transitions. The
collaboration model connects the execution of statecharts
of objects. In this approach, modeling systems using the
UML is similar to that in the Real-Time Object-Oriented
Modeling (ROOM) [Selic94] and Rational Rose Real-
Time [Rose05] where each object executes its statechart.

[Pettit00, Pettit04, Pettit06] describes an approach to
integrating CPN with software architectural designs
created with the COMET method [Gomaa00] and
specified in the UML. The behavior of the system is
described in the UML collaboration diagrams supported
by objects where each object is classified using a
stereotype. The behavior of each different type of object
in the collaboration diagrams is represented as a
behavioral pattern using the CPN.

The approaches above have focused on the
transformation of system models to the CPN models so
that the system can be analyzed using the CPN models.
However, less attention is paid to scalability issues
[Shin05] related to model transformation for large-scale
systems and the analysis of CPN models.

3. Overview of Approach
Using the UML notation, the software architecture

[Buschmann96, Shaw96] for a software system is

structured into components and interactions between the
components. The UML is an industry-standardized
notation for development of object-oriented software
systems. A component provides functional services, which
are relatively independent of the functionality provided by
other components. The interactions between components
describe the synchronization in the message
communication between components.

The software architecture for a system, modeled in the
UML, is transformed into the hierarchical CPN model
where a higher level transition (i.e., an activity that
transforms data values) is hierarchically decomposed into
lower level CPNs. The fundamental notion of the
hierarchical structure in CPN models is to reduce
complexity of analysis as well as complexity of plain CPN
models of large-scale software systems. Fig. 1 depicts the
overview of model transformation of the software
architecture with the UML ((a) of Fig. 1) to the software
architecture with the CPN ((b) of Fig. 1), which is
hierarchically transformed into the component
communication CPN layer, component interface CPN
layer, object communication CPN layer, and operation
CPN layer. The CPN model is used to analyze the
software architecture for a system. The detailed
transformation of the software architecture with the UML
to the corresponding CPN model is described in section 5.

«component»
Component1

«component»
Component2

«component»
Component3

1: Notify

3: Response

2: Request

«interface»
INotification

notify (in event)

message

«class»
Object1Class

receive (in event)

«class»
Object2Class

update (in event)

Component Communication Model

Component Interface for Component3

Object Communication Model for Notify Service in Component3

Class Model

Compoment1

Object2Object1

receive

Compoment2

Compoment3

Notify

asynchronous
Message

Communication
Connector

synchronous
Message

Communication
Connector

asynchronous
Message

Communication
Connector

update

Component Communication CPN Layer

Component Interface CPN Layer for Component3

Object Communication CPN Layer for Notify Service in
Component3

Operation CPN Layer
for Object1

Operation CPN Layer
for Object2

a) Software Architecture with UML b) Software Architecture with CPN

«component»
Component3

INotification

IResponse

IRequest

«object»
Object1

«object»
Object2

Fig. 1 Overview of Model Transformation

By consideration of the scalability in the analysis of
the software architecture for a large-scaled software
system, the software architecture is analyzed using the
CPN model at the levels of different abstraction of
components. The functionality of software architecture is
analyzed at the (abstract) component level ((a) in Fig.2) in
which the analysis focuses on the interaction between

components modeled with less detailed (internal) objects
supporting the services provided by the components. Each
component is a concurrent component, which
communicates with other concurrent components via
synchronized message communications. Each component
in the software architecture with the UML is mapped to a
(component) transition in the CPN model in which the
transition needs to be decomposed into a (leaf) sub-net.
This is because the CPN model should be executable. For
this, the functions provided by each component are
modeled with the minimum number of objects supporting
the functionality, and then the interaction between the
components is analyzed in terms of system properties
such as deadlock. The Component1, Component2 and
Component3 ((a) in Fig.2) are analyzed at the (abstract)
component level.

«component»
Component1

«component»
Component2

«component»
Component3

«component»
Component1

«component»
Component2

«object»
:Object1

«object»
:Object2

«object»
:Object3

«object»
:Object4

«component»
Component3

a) Analysis between Components

b) Analysis within a Component

Fig. 2 Analysis of Software Architecture

The detailed interaction between objects within a

selected component is analyzed at the (concrete)
component level ((b) of Fig. 2). By consideration of
scalability of CPN model analysis, a selected component
is modeled with detailed objects supporting the
component whereas the other (not-selected) components
are not changed as modeled at the abstract component
level (i.e., the not-selected components were modeled
with the minimal objects at the abstract component level).
Suppose the Component3 is selected to be analyzed. The
services realized by the detailed objects, Object1,
Object2, Object3 and Object4, for the selected
Component3 ((b) in Fig. 2) are analyzed together with the
Component1 and Component2 that are used at the abstract
component level. When all the services in the
Component3 are analyzed, either Component1 or
Component2 is selected to be analyzed. If the
Component1 is selected, the Component1 is modeled with

the detailed objects, and analyzed with the Component2
and Component3 used at the abstract component level.

4. Message Communication for Software
Architecture

The concurrent components or objects in the software
architecture communicate with each other in different
types of message communication, such as synchronous
message communication without reply, synchronous
message communication with reply, or asynchronous
message communication [Gomaa00]. These types of
message communication modeled in the UML notation
are transformed to the corresponding message
communication connectors in the CPN notation.

With synchronous message communication without
reply, a producer sends a message to a consumer and
waits for the consumer to receive the message. When the
consumer receives the message, the producer can send a
new message to the consumer again. Fig. 3 depicts the
synchronous message communication without reply using
the UML notation ((3a) of Fig. 3), which is transformed
into the message buffer connector in the CPN notation
((3b) of Fig. 3) [Pettit06]. A producer sends a message,
consisting of both data and control, to a consumer. When
the consumer receives the message, it returns the control
to the producer. With the control, the producer can send a
new message to the consumer.

Message

Control

DataSet

CTL

1’ (data, ctl)

1’ ctl

1’ ctl1’ ctl

1’ (data, ctl)

(3b) Synchronous Message communication without reply using CPN

Message Buffer connector

Producer Consumer

Operation (in data)

(3a) Synchronous Message communication without reply using UML

Producer Consumer

Fig. 3 Synchronous message communication without reply

Synchronous message communication with reply is
used to model a client/server message communication.
The producer sends a message to the consumer and then
waits for a reply from the consumer. Fig. 4 depicts the
synchronous message communication with reply using the
UML notation ((4a) of Fig. 4), which is transformed into
the message and response buffer connector using the CPN

notation ((4b) of Fig. 4) [Pettit06]. The producer sends a
message with a control to the consumer. The consumer
replies a response with a control to the producer. When
the response and control arrive at the producer, the
producer continues to work.

Message

Response

DataSet

Response

1’ (data, ctl)

1’ response

1’ (data, ctl)

(4b) Synchronous Message communication with reply using CPN

1’ ctl

1’ response

Control

CTL

1’ ctl

1’ ctl

Message and Response Buffer connector

(4a) Synchronous Message communication with reply using UML

Producer Consumer

Producer
Send

Consumer

Operation (in data, out response)

Producer
Receive

Fig. 4 Synchronous message communication with reply

With asynchronous message communication, the

producer sends a message to the consumer and continues
to work. Fig. 5 depicts the asynchronous message
communication using the UML notation ((5a) of Fig. 5),
which is transformed into the message queue connector
with size N using the CPN notation ((5b) and (5c) of Fig.
5) [Pettit06]. The producer sends a message, which is
stored in a queue (size N) when the consumer does not
read a message (i.e., control is empty). The producer can
store the next message to the queue until the queue is full.
The consumer receives a message from the queue if the
queue is not empty.

5. Model Transformation for Software
Architecture

The software architecture, modeled using the UML, is
transformed into the hierarchical CPN model. The UML
communication diagram, referred to as the component
communication diagram (top of left-hand side in Fig. 1),
is used to model components and their interactions in the
software architecture for a software system. This diagram
is transformed into the component communication CPN
layer (top of right-hand side in Fig. 1) in which a
component and an interaction between components in the
software architecture model with the UML are mapped to
a transition and a message communication connector in
the software architecture model with the CPN,
respectively. The components, Component1,
Component2, and Component3, in the UML model (Fig.
1) are mapped to the transitions, Component1,
Component2, and Component3, in the CPN model. Both

the interaction between Component1 and Component3,
and the interaction between Component2 and
Component3 in the UML model are mapped to their
corresponding connectors in the CPN model as well.

Message
Queue

data1

data2

CTL

Size = 1
Size = 1

ctl

Enqueue DequeueQueue

Size = N[ctl=Empty] [ctl=Not Empty]

CTL

data2data1

ctl ctl

Message Queue Connector (Size = N)

Size = N

(5b) Asynchronous Message Communication using CPN

(5c) Message Queue Connector

Operation (in data)

(5a) Asynchronous Message communication using UML

Producer

Producer

Consumer

Consumer

Message Queue

Fig. 5 Asynchronous message communication

Fig. 6 depicts the component communication CPN that

is transformed from the UML component communication
diagram for the software architecture for the Automated
Teller Machine (ATM) system [Gomaa00], which is
modified for this paper. The ATM system provides a
customer with the three services - withdraw funds, query
the balance, and transfer funds - after validating the
customer Personal Identification Number (PIN). The
software architecture for the ATM system consists of the
ATM Client and Server components, having the
synchronous message communication between the
components.

A component provides other components with
functional services and/or requires services from others.
The functional services of each component are specified
in the interfaces of the component (middle of left-hand
side in Fig. 1). The component interface diagram for the
software architecture with the UML is transformed into
the component interface CPN layer (middle of right-hand
side in Fig. 1) where a functional service of a component
is mapped to a transition in the sub-CPN of the
component transition in the component communication
CPN. The Notification is one of Component3 interfaces,
defining the “Notify” service, which is mapped to the
“Notify” transition in the sub-CPN of the Component3
transition.

Fig. 6 Component Communication CPN for ATM system

Each service in the interface of a component of the

software architecture with the UML is described by means
of objects, such as active objects and passive objects
accessed by active objects, and the interaction among the
objects. An active object has its own thread of control,
while a passive object has no thread of control. As with
the interaction between components, active objects
communicate with each other via the synchronization
mechanism. The collaboration among objects for a
functional service of an interface of a component is

represented using the UML communication diagram
(middle of left-hand side in Fig. 1), referred to as the
object communication diagram, which is transformed into
the object communication CPN layer (middle of right-
hand side in Fig. 1). The “Notify” service in the
Notification interface is realized by the Object1 and
Object2, which are mapped to the Object1 and Object2
transitions in the object communication CPN layer. The
interaction between Object1 and Object2 is transformed
into the message communication connector in the sub-
CPN of the “Notify” transition.

At the abstract component level, the services provided
by components are modeled with the minimal number of
objects, whereas, at the concrete component level, the
services provided by a component selected to be analyzed
in detail are modeled with the detailed objects. This aims
at reducing the complexity of analysis of the CPN model
for the software architecture. Fig. 7 depicts the object
communication CPN transformed from detailed objects
supporting the Validate PIN Service in the ATM Client
component. This service is supported by three active
objects such as Card Reader Interface, Customer
Interface, and ATM Controller, and two passive (entity)
objects such as ATM Card and ATM Transaction entity
objects.

Fig. 7 Detailed Object Communication CPN for Validate PIN Service in ATM Client Component

Fig. 8 depicts the object communication CPN
transformed from the minimal number of objects - Card
Reader Interface and Customer Interface - for the Validate
PIN Service in the ATM client component. The ATM
card ID and transaction information are stored directly to
the corresponding places in the CPN model (Fig. 8), not
through the ATM Card and ATM Transaction passive
objects (Fig. 7). The ATM Controller object in Fig. 7 is
removed in Fig. 8 by coordinating the execution sequence
between the Card Reader Interface and Customer
Interface transitions using the data object (token) – Card
ID.

Fig. 8 Abstract Object Communication CPN for Validate
PIN Service in ATM Client Components

An object in the object communication model is

instantiated from a class in the class model (bottom of
left-hand side in Fig. 1), which defines the operations
provided by an object (class). When a receiver object
receives a message from a sender object, an operation in
the receiver object is called so that the object processes
the message. The class model for the software architecture
with the UML is transformed into the operation CPN layer
(bottom of right-hand side in Fig. 1) in which an operation
of an object (instantiated from a class) is mapped to a
transition in the sub-CPN of a transition in the object
communication CPN. When the Object2 receives a
message from the Object1 in Fig. 1, the “update”
operation of Object2 is called. The “update” operation is
mapped to the “update” transition in the sub-CPN of the
Object2 transition.

6. Analysis of Software Architecture

The state space reports (Fig. 9) are generated by the
CPNTools [CPNTools07] using the occurrence graph of
the CPN model for the PIN validation and withdraw funds
service provided by the client and server components in

the ATM system. The state space report, (a) of Fig. 9, has
been generated from the software architecture modeled
using the client and server components in which both
client and server components are modeled with the
detailed objects. On the other hand, in the state space
report, (b) of Fig. 9, the client component is modeled with
the detailed objects, while the server component is
modeled with the minimal objects i.e., abstract object
communication diagram.

Statistics

State Space
Nodes: 150155
Arcs: 289266
Secs: 1485
Status: Full

Scc Graph
Nodes: 150155
Arcs: 289266
Secs: 35

Home Properties
--

Home Markings
Initial Marking is not a home marking

Liveness Properties
--

Dead Markings
[150155]

Fairness Properties
--

No infinite occurrence sequences.

Statistics
--
State Space

Nodes: 23198
Arcs: 137565
Secs: 1200
Status: Full

Scc Graph
Nodes: 23198
Arcs: 137565
Secs: 20

Home Properties
--
Home Markings

Initial Marking is not a home marking

Liveness Properties
--
Dead Markings

[23198]

Fairness Properties
--

No infinite occurrence sequences.

(a) State space report for concrete ATM client
and ATM server components

(b) State space report for concrete ATM client and
abstract ATM server components

Fig. 9. State Space Report for ATM System

From the statistics it can be seen that the occurrence

graph in (b) of Fig. 9 takes less time in analysis of the
model than that in (a) of Fig. 9. The former has 23198
states in the state space report and the latter has 150155
states. More states in a CPN model means that it takes
more time in analysis. However, the effects of analysis in
both approaches are the same. In (b) of Fig. 9, the
software architecture is analyzed using all abstract
components, that is, abstract client and server components
first, and then each concrete component is analyzed in
turn in detail.

The state space reports also show other analysis such
as Home properties, Liveness properties, Fairness
properties, and even other customized queries that can be
defined using ML functions [Jensen02].

7. Conclusions

This paper has described the model transformation of
the software architecture with the UML to the
corresponding CPN model, which can be used to analyze
the dynamic properties of large-scale systems. In order to
analyze the CPN models for large-scale application
systems within a reasonable time, the software
architecture for a system, modeled in the UML, is
transformed into the hierarchical CPN model structured
into the component communication CPN layer,
component interface CPN layer, object communication

CPN layer, and operation CPN layer. The software
architecture for a system is analyzed using the CPN model
at the levels of different abstraction of components so as
to reduce the complexity of the analysis of the CPN
model.

This research has the future work. The approach
suggested in this paper needs to be validated with more
application systems. Currently this approach has been
applied to the ATM system. Also this approach can be
extended to tool support for the model transformation.
The UML-based software architecture model may be
captured using a CASE tool such as Rational Rose
[Rose05], while the corresponding CPN model is
described using the CPNTools [CPNTools07]. In the tool
support, the UML model represented using a CASE tool
needs to be automatically mapped to the CPN model
described using the CPNTools.

References

[Baresi97] L. Baresi, A. Orso, and M. Pezzè, “Introducing
Formal Specification Methods in Industrial Practice,” In
Proceedings of the 1997 International Conference on
Software Engineering, pages 56-66, ACM Press, Boston
(USA), May 1997.

[Booch05] G. Booch, J. Rumbaugh, I. Jacobson, “The
Unified Modeling Language User Guide”, Second
Edition, Addison Wesley, Reading MA, 2005.

[Buschmann96] F. Buschmann, R. Meunier, H.
Rohnert, P. Sommerlad, "Pattern Oriented Software
Architecture: A System of Patterns," John Wiley &
Sons, 1996.

[CPNTools07] http://www.daimi.au.dk/cpntools,
“CPNTools on-line,” 2007.

[DesignCPN04] http://www.daimi.au.dk/designCPN,
“Design/CPN on-line,” 2004.

[Elkoutbi00] Mohammed Elkoutbi and Rudolf K. Keller,
“User Interface Prototyping based on UML Scenarios and
High-level Petri Nets,” 21st International Conference on
Application and Theory of Petri Nets, Aarhus, Denmark,
June 26-30, 2000.

[Elkoutbi98] Mohammed Elkoutbi and Rudolf K. Keller,
“Modeling Interactive Systems with Hierarchical Colored
Petri Nets,” Advanced Simulation Technologies
Conference, Boston Park Plaza Hotel, April 5-9, USA,
1998.

[Gomaa00] Hassan Gomaa, “Designing Concurrent,
Distributed, and Real-Time Applications with UML,”
Addison-Wesley, 2000.

[Jensen02] Kurt Jensen, Søren Christensen, and Lars M
Kristensen, “CPN Tools State Space Manual,” University
of Aarhus, Aarhus N, Denmark, 2002.

[Kristensen98] Lars M. Kristensen, Soren Christensen,
and Kurt Jensen, “The practitioner’s guide to colored Petri
nets,” Internaltion Journal STTT, Vol.2, pages 98-132,
1998.

[Pettit00] R. Pettit and H. Gomaa, "Validation of
Dynamic Behavior in UML Using Colored Petri Nets",
Proc. Workshop on Dynamic Behaviour in UML Models:
Semantic Questions, UML 2000 Conference, York,
England, October 2000.

[Pettit04] R. Pettit IV and H. Gomaa, “Modeling
Behavioral Patterns of Concurrent Software Architectures
Using Petri Nets”, Working IEEE Conference on Software
Architectures (WICSA) 2004, Oslo, Norway, June 2004.

[Pettit06] R. Pettit IV and H. Gomaa, “Modeling
Behavioral Design Patterns of Concurrent Objects”, Proc.
28th International Conference on Software Engineering
(ICSE), Shanghai, China, May 2006.

[Rose05] Rose, http://www-
306.ibm.com/software/awdtools/developer/rose/, IBM,
2005.

[Rumbaugh05] J. Rumbaugh, G. Booch, I. Jacobson, “The
Unified Modeling Language Reference Manual,” Second
Edition, Addison Wesley, Reading MA, 2005.

[Saldhana00] John Anil Saldhana and Sol M. Shatz,
“UML Diagrams to Object Petri Net Models: An
Approach for Modeling and Analysis,” Proceedings of the
Int. Conference on Software Engineering and Knowledge
Engineering (SEKE), Chicago, July 2000.

[Saldhana01] J. Saldhana, S. M. Shatz, and Z. Hu,
"Formalization of Object Behavior and Interactions From
UML Models," International Journal of Software
Engineering and Knowledge Engineering (IJSEKE), Vol.
11, No. 6, pp. 643-673, Dec. 2001.

[Selic94] B. Selic, G. Gullekson, and P. T. Ward, “Real-
Time Object-Oriented Modeling,” John Wiley & Sons,
1994.

[Shaw96] M. Shaw and D. Garlan, “Software
Architecture: Perspectives on an Emerging Discipline,”
Prentice Hall, 1996.

[Shin05] M. Shin, A. Levis, L. Wagenhals, and
D. Kim, “Analyzing Dynamic Behavior of
Large-Scale System through Model
Transformation,” International Journal of
Software Engineering and Knowledge
Engineering, Vol. 15, No. 1, 2005, pp. 35-60.

