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Abstract 
 

This paper describes the scalability issue in the 
analysis of the software architecture with the Colored 
Petri Net (CPN), which is transformed from the Unified 
Modeling Language (UML) based software architecture 
for large-scale application systems. In this paper, the 
software architecture for an application system is modeled 
using the UML first, and then it is transformed into a 
hierarchical CPN model that is executable. Dynamic 
properties, such as deadlock, of the software architecture 
for a system are analyzed using the executable CPN 
model at the levels of different abstraction of components 
so as to reduce the complexity of the analysis. The ATM 
system is used to demonstrate the approach.    
 

1. Introduction 
 

As the Unified Modeling Language (UML) 
[Booch05, Rumbaugh05] becomes an industry wide 
standardized notation for object-oriented software 
development, the software architectures for application 
systems have been specified in the UML notation. The 
UML-based software architectures for applications need 
to be analyzed in terms of dynamic behavior of the 
systems, such as correctness and performance. However, 
the UML-based software architecture models are not 
executable so that the dynamic properties can not be 
analyzed.  

The software architectures with the UML for 
application systems have been transformed into the 
Colored Petri Net (CPN) [Kristensen98] models in order 
to evaluate dynamic behavior of the systems. This is 
because the CPN models can be evaluated by powerful 
analysis tools, such as the CPNTools [CPNTools07] and 
Design/CPN [DesignCPN04]. The CPN analysis tools can 
quickly not only show that a CPN model behaves in the 
desired manner, but also check several properties, such as 
boundedness properties, home and liveness properties, 
and fairness properties. In particular, the concurrency 
properties of applications, such as deadlock, are evaluated 
using the occurrence graph and state space report 
generated by the CPN analysis tools. The occurrence 
graph traces all possible system states that can be reached 

by the system so as to check whether the system frees 
from deadlock. A deadlock-free system ensures that the 
system is not suspended indefinitely.  

However, the CPN analysis tools may not be fit or may 
fail to analyze large-scale application systems within a 
reasonable time due to the limited resource. The CPN 
analysis tools generate all the possible system states for a 
CPN model, and trace them to check the desired 
properties. As a system becomes larger, the tools need to 
generate and trace more system states. This makes it 
difficult for the tools to finish the analysis within a 
reasonable time or fall into failure of the analysis. Thus, 
scalability of the analysis of CPN models needs to be 
considered in transforming the large-scale software 
architectural models to the corresponding CPN models.      

This paper describes development of the CPN model 
transformed from the software architecture model with the 
UML for a large-scale application system by considering 
the scalability of the analysis of the CPN model. The 
software architecture for a system, modeled with the 
UML, is evaluated using the CPN model in terms of the 
concurrency properties such as deadlock as well as the 
correctness of message communication among concurrent 
components constituting the software architecture as well 
as concurrent objects supporting each component. To do 
this, the software architecture for a system, modeled with 
the UML, is transformed into the corresponding software 
architecture, modeled with the CPN, which has a 
hierarchical structure in order to reduce the complexity of 
flat structure. In addition, the software architecture for a 
system is analyzed using the transformed CPN model at 
the levels of different abstraction of components. 

This paper begins by describing the related work in 
section 2. Section 3 describes the overview of our 
approach. Section 4 describes the message 
communication for software architecture. Section 5 
describes the model transformation for software 
architecture Section 6 describes analysis of software 
architecture. Section 7 concludes this paper.  
 

2. Related Work  
 

Related work addresses scalability in the analysis of 
software system models using the CPN model in terms of 



 

software requirements and software architecture. 
[Baresi97] proposes a technique based on a formalism 

to define the mapping from front-end informal 
(specification) notations to formal models. The semantics 
underlying the mapping is defined by means of sets of 
rules, and can be tailored to the working environment. 
The approach proposed in [Baresi97] is concerned with 
customizability of structured analysis-oriented models, 
thus allowing semantics to be adapted to the needs of the 
application systems.  

 [Elkoutbi98, Elkoutbi00] presents the CPN model 
transformed from the UML model as two levels of 
abstraction – the use case level and scenario level. Each 
use case is mapped to a place at the use case level that has 
a special place, “Begin,” modeling the entry of the 
system. A use case is decomposed into sub-use cases 
using “use” relationships among use cases in the use case 
model. For each decomposed use case, a table is 
constructed at the scenario level to describe object states 
associated with scenarios, and then a whole CPN model is 
produced by merging all scenarios of each use case using 
an algorithm for scenario integration.  

In [Saldhana00, Saldhana01], an Object Petri Nets 
model of a system is developed from the statechart model 
and collaboration model of the UML. The system is 
specified in the center of the statechart model where the 
statechart model describes states and their transitions in 
response to events to objects. States in the statechart 
model are mapped onto Petri Net places and state 
transitions are mapped onto Petri Net transitions. The 
collaboration model connects the execution of statecharts 
of objects. In this approach, modeling systems using the 
UML is similar to that in the Real-Time Object-Oriented 
Modeling (ROOM) [Selic94] and Rational Rose Real-
Time [Rose05] where each object executes its statechart. 

[Pettit00, Pettit04, Pettit06] describes an approach to 
integrating CPN with software architectural designs 
created with the COMET method [Gomaa00] and 
specified in the UML. The behavior of the system is 
described in the UML collaboration diagrams supported 
by objects where each object is classified using a 
stereotype. The behavior of each different type of object 
in the collaboration diagrams is represented as a 
behavioral pattern using the CPN.   

The approaches above have focused on the 
transformation of system models to the CPN models so 
that the system can be analyzed using the CPN models. 
However, less attention is paid to scalability issues 
[Shin05] related to model transformation for large-scale 
systems and the analysis of CPN models. 

 

3. Overview of Approach 
Using the UML notation, the software architecture 

[Buschmann96, Shaw96] for a software system is 

structured into components and interactions between the 
components. The UML is an industry-standardized 
notation for development of object-oriented software 
systems. A component provides functional services, which 
are relatively independent of the functionality provided by 
other components. The interactions between components 
describe the synchronization in the message 
communication between components.  

The software architecture for a system, modeled in the 
UML, is transformed into the hierarchical CPN model 
where a higher level transition (i.e., an activity that 
transforms data values) is hierarchically decomposed into 
lower level CPNs. The fundamental notion of the 
hierarchical structure in CPN models is to reduce 
complexity of analysis as well as complexity of plain CPN 
models of large-scale software systems. Fig. 1 depicts the 
overview of model transformation of the software 
architecture with the UML ((a) of Fig. 1) to the software 
architecture with the CPN ((b) of Fig. 1), which is 
hierarchically transformed into the component 
communication CPN layer, component interface CPN 
layer, object communication CPN layer, and operation 
CPN layer. The CPN model is used to analyze the 
software architecture for a system. The detailed 
transformation of the software architecture with the UML 
to the corresponding CPN model is described in section 5. 
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Fig. 1 Overview of Model Transformation 

By consideration of the scalability in the analysis of 
the software architecture for a large-scaled software 
system, the software architecture is analyzed using the 
CPN model at the levels of different abstraction of 
components. The functionality of software architecture is 
analyzed at the (abstract) component level ((a) in Fig.2) in 
which the analysis focuses on the interaction between 



 

components modeled with less detailed (internal) objects 
supporting the services provided by the components. Each 
component is a concurrent component, which 
communicates with other concurrent components via 
synchronized message communications. Each component 
in the software architecture with the UML is mapped to a 
(component) transition in the CPN model in which the 
transition needs to be decomposed into a (leaf) sub-net. 
This is because the CPN model should be executable. For 
this, the functions provided by each component are 
modeled with the minimum number of objects supporting 
the functionality, and then the interaction between the 
components is analyzed in terms of system properties 
such as deadlock. The Component1, Component2 and 
Component3 ((a) in Fig.2) are analyzed at the (abstract) 
component level. 
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Fig. 2 Analysis of Software Architecture 

 
The detailed interaction between objects within a 

selected component is analyzed at the (concrete) 
component level ((b) of Fig. 2). By consideration of 
scalability of CPN model analysis, a selected component 
is modeled with detailed objects supporting the 
component whereas the other (not-selected) components 
are not changed as modeled at the abstract component 
level (i.e., the not-selected components were modeled 
with the minimal objects at the abstract component level). 
Suppose the Component3 is selected to be analyzed. The 
services realized by the detailed objects, Object1, 
Object2, Object3 and Object4, for the selected 
Component3 ((b) in Fig. 2) are analyzed together with the 
Component1 and Component2 that are used at the abstract 
component level. When all the services in the 
Component3 are analyzed, either Component1 or 
Component2 is selected to be analyzed. If the 
Component1 is selected, the Component1 is modeled with 

the detailed objects, and analyzed with the Component2 
and Component3 used at the abstract component level.  
                    

4. Message Communication for Software 
Architecture    
 

The concurrent components or objects in the software 
architecture communicate with each other in different 
types of message communication, such as synchronous 
message communication without reply, synchronous 
message communication with reply, or asynchronous 
message communication [Gomaa00]. These types of 
message communication modeled in the UML notation 
are transformed to the corresponding message 
communication connectors in the CPN notation. 

With synchronous message communication without 
reply, a producer sends a message to a consumer and 
waits for the consumer to receive the message. When the 
consumer receives the message, the producer can send a 
new message to the consumer again. Fig. 3 depicts the 
synchronous message communication without reply using 
the UML notation ((3a) of Fig. 3), which is transformed 
into the message buffer connector in the CPN notation 
((3b) of Fig. 3) [Pettit06]. A producer sends a message, 
consisting of both data and control, to a consumer. When 
the consumer receives the message, it returns the control 
to the producer. With the control, the producer can send a 
new message to the consumer.     

Message
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CTL
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1’ ctl

1’ ctl1’ ctl
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(3b) Synchronous Message communication without reply using CPN

Message Buffer connector

Producer Consumer 

Operation (in data)

(3a) Synchronous Message communication without reply using UML

Producer Consumer 

Fig. 3 Synchronous message communication without reply 
 

Synchronous message communication with reply is 
used to model a client/server message communication. 
The producer sends a message to the consumer and then 
waits for a reply from the consumer. Fig. 4 depicts the 
synchronous message communication with reply using the 
UML notation ((4a) of Fig. 4), which is transformed into 
the message and response buffer connector using the CPN 



 

notation ((4b) of Fig. 4) [Pettit06]. The producer sends a 
message with a control to the consumer. The consumer 
replies a response with a control to the producer. When 
the response and control arrive at the producer, the 
producer continues to work. 
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Fig. 4 Synchronous message communication with reply 

 
With asynchronous message communication, the 

producer sends a message to the consumer and continues 
to work. Fig. 5 depicts the asynchronous message 
communication using the UML notation ((5a) of Fig. 5), 
which is transformed into the message queue connector 
with size N using the CPN notation ((5b) and (5c) of Fig. 
5) [Pettit06]. The producer sends a message, which is 
stored in a queue (size N) when the consumer does not 
read a message (i.e., control is empty). The producer can 
store the next message to the queue until the queue is full. 
The consumer receives a message from the queue if the 
queue is not empty.   

 

5. Model Transformation for Software 
Architecture  
 

The software architecture, modeled using the UML, is 
transformed into the hierarchical CPN model. The UML 
communication diagram, referred to as the component 
communication diagram (top of left-hand side in Fig. 1), 
is used to model components and their interactions in the 
software architecture for a software system. This diagram 
is transformed into the component communication CPN 
layer (top of right-hand side in Fig. 1) in which a 
component and an interaction between components in the 
software architecture model with the UML are mapped to 
a transition and a message communication connector in 
the software architecture model with the CPN, 
respectively. The components, Component1, 
Component2, and Component3, in the UML model (Fig. 
1) are mapped to the transitions, Component1, 
Component2, and Component3, in the CPN model. Both 

the interaction between Component1 and Component3, 
and the interaction between Component2 and 
Component3 in the UML model are mapped to their 
corresponding connectors in the CPN model as well. 
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Fig. 5 Asynchronous message communication 

 
Fig. 6 depicts the component communication CPN that 

is transformed from the UML component communication 
diagram for the software architecture for the Automated 
Teller Machine (ATM) system [Gomaa00], which is 
modified for this paper. The ATM system provides a 
customer with the three services - withdraw funds, query 
the balance, and transfer funds - after validating the 
customer Personal Identification Number (PIN). The 
software architecture for the ATM system consists of the 
ATM Client and Server components, having the 
synchronous message communication between the 
components.   

A component provides other components with 
functional services and/or requires services from others. 
The functional services of each component are specified 
in the interfaces of the component (middle of left-hand 
side in Fig. 1). The component interface diagram for the 
software architecture with the UML is transformed into 
the component interface CPN layer (middle of right-hand 
side in Fig. 1) where a functional service of a component 
is mapped to a transition in the sub-CPN of the 
component transition in the component communication 
CPN. The Notification is one of Component3 interfaces, 
defining the “Notify” service, which is mapped to the 
“Notify” transition in the sub-CPN of the Component3 
transition. 



 

 
Fig. 6 Component Communication CPN for ATM system 

 
Each service in the interface of a component of the 

software architecture with the UML is described by means 
of objects, such as active objects and passive objects 
accessed by active objects, and the interaction among the 
objects. An active object has its own thread of control, 
while a passive object has no thread of control. As with 
the interaction between components, active objects 
communicate with each other via the synchronization 
mechanism. The collaboration among objects for a 
functional service of an interface of a component is 

represented using the UML communication diagram 
(middle of left-hand side in Fig. 1), referred to as the 
object communication diagram, which is transformed into 
the object communication CPN layer (middle of right-
hand side in Fig. 1). The “Notify” service in the 
Notification interface is realized by the Object1 and 
Object2, which are mapped to the Object1 and Object2 
transitions in the object communication CPN layer. The 
interaction between Object1 and Object2 is transformed 
into the message communication connector in the sub-
CPN of the “Notify” transition.  

At the abstract component level, the services provided 
by components are modeled with the minimal number of 
objects, whereas, at the concrete component level, the 
services provided by a component selected to be analyzed 
in detail are modeled with the detailed objects. This aims 
at reducing the complexity of analysis of the CPN model 
for the software architecture. Fig. 7 depicts the object 
communication CPN transformed from detailed objects 
supporting the Validate PIN Service in the ATM Client 
component. This service is supported by three active 
objects such as Card Reader Interface, Customer 
Interface, and ATM Controller, and two passive (entity) 
objects such as ATM Card and ATM Transaction entity 
objects.

  
Fig. 7 Detailed Object Communication CPN for Validate PIN Service in ATM Client Component 



 

Fig. 8 depicts the object communication CPN 
transformed from the minimal number of objects - Card 
Reader Interface and Customer Interface - for the Validate 
PIN Service in the ATM client component. The ATM 
card ID and transaction information are stored directly to 
the corresponding places in the CPN model (Fig. 8), not 
through the ATM Card and ATM Transaction passive 
objects (Fig. 7). The ATM Controller object in Fig. 7 is 
removed in Fig. 8 by coordinating the execution sequence 
between the Card Reader Interface and Customer 
Interface transitions using the data object (token) – Card 
ID. 

 

Fig. 8 Abstract Object Communication CPN for Validate 
PIN Service in ATM Client Components 

 
An object in the object communication model is 

instantiated from a class in the class model (bottom of 
left-hand side in Fig. 1), which defines the operations 
provided by an object (class). When a receiver object 
receives a message from a sender object, an operation in 
the receiver object is called so that the object processes 
the message. The class model for the software architecture 
with the UML is transformed into the operation CPN layer 
(bottom of right-hand side in Fig. 1) in which an operation 
of an object (instantiated from a class) is mapped to a 
transition in the sub-CPN of a transition in the object 
communication CPN. When the Object2 receives a 
message from the Object1 in Fig. 1, the “update” 
operation of Object2 is called. The “update” operation is 
mapped to the “update” transition in the sub-CPN of the 
Object2 transition.  
 

6. Analysis of Software Architecture 
 

The state space reports (Fig. 9) are generated by the 
CPNTools [CPNTools07] using the occurrence graph of 
the CPN model for the PIN validation and withdraw funds 
service provided by the client and server components in 

the ATM system. The state space report, (a) of Fig. 9, has 
been generated from the software architecture modeled 
using the client and server components in which both 
client and server components are modeled with the 
detailed objects. On the other hand, in the state space 
report, (b) of Fig. 9, the client component is modeled with 
the detailed objects, while the server component is 
modeled with the minimal objects i.e., abstract object 
communication diagram. 
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(a) State space report for concrete ATM client 
and ATM server components

(b) State space report for concrete ATM client and 
abstract ATM server components

Fig. 9. State Space Report for ATM System 
  
From the statistics it can be seen that the occurrence 

graph in (b) of Fig. 9 takes less time in analysis of the 
model than that in (a) of Fig. 9. The former has 23198 
states in the state space report and the latter has 150155 
states. More states in a CPN model means that it takes 
more time in analysis. However, the effects of analysis in 
both approaches are the same. In (b) of Fig. 9, the 
software architecture is analyzed using all abstract 
components, that is, abstract client and server components 
first, and then each concrete component is analyzed in 
turn in detail.    

The state space reports also show other analysis such 
as Home properties, Liveness properties, Fairness 
properties, and even other customized queries that can be 
defined using ML functions [Jensen02]. 

 

7. Conclusions 
 

This paper has described the model transformation of 
the software architecture with the UML to the 
corresponding CPN model, which can be used to analyze 
the dynamic properties of large-scale systems. In order to 
analyze the CPN models for large-scale application 
systems within a reasonable time, the software 
architecture for a system, modeled in the UML, is 
transformed into the hierarchical CPN model structured 
into the component communication CPN layer, 
component interface CPN layer, object communication 



 

CPN layer, and operation CPN layer. The software 
architecture for a system is analyzed using the CPN model 
at the levels of different abstraction of components so as 
to reduce the complexity of the analysis of the CPN 
model.  

This research has the future work. The approach 
suggested in this paper needs to be validated with more 
application systems. Currently this approach has been 
applied to the ATM system. Also this approach can be 
extended to tool support for the model transformation. 
The UML-based software architecture model may be 
captured using a CASE tool such as Rational Rose 
[Rose05], while the corresponding CPN model is 
described using the CPNTools [CPNTools07]. In the tool 
support, the UML model represented using a CASE tool 
needs to be automatically mapped to the CPN model 
described using the CPNTools.  
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