Scalability in Analysis of Software Architecture

Michael E. Shin
Dept. of Computer Science
Texas Tech University
Lubbock, TX 79409-3104
Michael.Shin@ttu.edu

Abstract

This paper describes the scalability issue in the
analysis of the software architecture with the @edo
Petri Net (CPN), which is transformed from the bdf
Modeling Language (UML) based software architecture
for large-scale application systems. In this papbe
software architecture for an application systemdsleled
using the UML first, and then it is transformedoirg
hierarchical CPN model that is executable. Dynamic
properties, such as deadlock, of the software tectire

Bosah Chukgoo
Dept. of CatapScience
TeXach University
Lubbock, TX 79409-3104
boshblavuogo@ttu.edu

Marta E. Calderén
Computer Science Department
University of Cofteca
San Pedro, Costa Rica
mcalderon@ecci.ucr.cr

by the system so as to check whether the systees fre
from deadlock. A deadlock-free system ensures tiat
system is not suspended indefinitely.

However, the CPN analysis tools may not be fit aym
fail to analyze large-scale application systemshiwita
reasonable time due to the limited resource. Th&l CP
analysis tools generate all the possible systetassfar a
CPN model, and trace them to check the desired
properties. As a system becomes larger, the tass o
generate and trace more system states. This makes i
difficult for the tools to finish the analysis with a

for a System are ana'yzed using the executable CPN reasonable time or fall into failure of the an%ySThUS,

model at the levels of different abstraction of poments
so as to reduce the complexity of the analysis. Af#
system is used to demonstrate the approach.

1. Introduction

As the Unified Modeling Language (UML)
[Booch05, Rumbaugh05] becomes an industry wide
standardized notation for object-oriented software
development, the software architectures for apfidina
systems have been specified in the UML notatiore Th
UML-based software architectures for applicatioegad
to be analyzed in terms of dynamic behavior of the
systems, such as correctness and performance. ldgwev
the UML-based software architecture models are not
executable so that the dynamic properties can ®ot b
analyzed.

The software architectures with the UML for
application systems have been transformed into the
Colored Petri Net (CPN) [Kristensen98] models idesr
to evaluate dynamic behavior of the systems. This i

because the CPN models can be evaluated by powerfu

analysis tools, such as the CPNTools [CPNToolsod] a
Design/CPN [DesignCPNO04]. The CPN analysis toois ca
quickly not only show that a CPN model behaveshia t
desired manner, but also check several propesieh as
boundedness properties, home and liveness prapertie
and fairness properties. In particular, the corengy
properties of applications, such as deadlock, eatuated

using the occurrence graph and state space report
generated by the CPN analysis tools. The occurrence

graph traces all possible system states that caadwed

scalability of the analysis of CPN models needséo
considered in transforming the large-scale software
architectural models to the corresponding CPN n®del
This paper describes development of the CPN model
transformed from the software architecture modéh wie
UML for a large-scale application system by consitg
the scalability of the analysis of the CPN modeheT
software architecture for a system, modeled with th
UML, is evaluated using the CPN model in termstef t
concurrency properties such as deadlock as wethas
correctness of message communication among comturre
components constituting the software architectsrevell
as concurrent objects supporting each componentdlo
this, the software architecture for a system, mediglith
the UML, is transformed into the corresponding wafe
architecture, modeled with the CPN, which has a
hierarchical structure in order to reduce the caxip} of
flat structure. In addition, the software architgetfor a
system is analyzed using the transformed CPN matel
the levels of different abstraction of components.
This paper begins by describing the related work in

Isection 2. Section 3 describes the overview of our

approach. Section 4 describes the message
communication for software architecture. Section 5
describes the model transformation for software

architecture Section 6 describes analysis of soffwa
architecture. Section 7 concludes this paper.

2. Related Work

Related work addresses scalability in the analgsis
software system models using the CPN model in terims

software requirements and software architecture.

[Baresi97] proposes a technique based on a formalis
to define the mapping from front-end informal
(specification) notations to formal models. The aatits
underlying the mapping is defined by means of séts
rules, and can be tailored to the working enviromme
The approach proposed in [Baresi97] is concerndd wi
customizability of structured analysis-oriented isd
thus allowing semantics to be adapted to the nettse
application systems.

[Elkoutbi98, Elkoutbi00] presents the CPN model
transformed from the UML model as two levels of
abstraction — the use case level and scenario. |[Bash
use case is mapped to a place at the use casd¢Hat/bhs
a special place, “Begin,” modeling the entry of the

structured into components and interactions betvthen
components. The UML is an industry-standardized
notation for development of object-oriented sofevar
systems. A component provides functional serviagsch

are relatively independent of the functionality yided by
other components. The interactions between compgsnen
describe the synchronization in the message
communication between components.

The software architecture for a system, modeletthén
UML, is transformed into the hierarchical CPN model
where a higher level transition (i.e., an activityat
transforms data values) is hierarchically decomgast
lower level CPNs. The fundamental notion of the
hierarchical structure in CPN models is to reduce
complexity of analysis as well as complexity ofipl€PN

system. A use case is decomposed into sub-use casesnodels of large-scale software systems. Fig. lotephe

using “use” relationships among use cases in thecase

overview of model transformation of the software

model. For each decomposed use case, a table isarchitecture with the UML ((a) of Fig. 1) to theftseare

constructed at the scenario level to describe olsjtes
associated with scenarios, and then a whole CPNehi®d
produced by merging all scenarios of each use usisg
an algorithm for scenario integration.

In [Saldhana00, SaldhanaOl], an Object Petri Nets
model of a system is developed from the statechadel
and collaboration model of the UML. The system is
specified in the center of the statechart modelrevtibe
statechart model describes states and their t@msitn
response to events to objects. States in the ktatec
model are mapped onto Petri Net places and state
transitions are mapped onto Petri Net transitiohise
collaboration model connects the execution of stegs
of objects. In this approach, modeling systems gusire
UML is similar to that in the Real-Time Object-Orted
Modeling (ROOM) [Selic94] and Rational Rose Real-
Time [Rose05] where each object executes its dtatec

[Pettit00, Pettit04, Pettit06] describes an apphnotx
integrating CPN with software architectural designs
created with the COMET method [Gomaa00] and
specified in the UML. The behavior of the system is
described in the UML collaboration diagrams supgubrt
by objects where each object is classified using a
stereotype. The behavior of each different typelméct
in the collaboration diagrams is represented as a
behavioral pattern using the CPN.

The approaches above have focused on the
transformation of system models to the CPN models s
that the system can be analyzed using the CPN model
However, less attention is paid to scalability éssu
[Shin05] related to model transformation for lagyale
systems and the analysis of CPN models.

3. Overview of Approach
Using the UML notation, the software architecture
[Buschmann96, Shaw96] for a software system is

architecture with the CPN ((b) of Fig. 1), which is
hierarchically transformed into the component
communication CPN layer, component interface CPN
layer, object communication CPN layer, and openmatio
CPN layer. The CPN model is used to analyze the
software architecture for a system. The detailed
transformation of the software architecture with thML

to the corresponding CPN model is described in@eét

=

! Message > ¢ !
{ Communicationie__| “€ C
i Connector N —

mponent Communication CPN Layer

Message

Connector

IResponse
«interface»
[[«component] INotification —_1> — —
O .II.] Notify T
notify (in event) [
INotification IRequest
Component Interface for Component3 Component Interface CPN Layer for Component3
gl - | | pronous |
Objectl |77, || Objectl | communicationi¢_| Obiect2 |t
message Connecwr

Object Communication Model for Notify Servicein Component3

1
T 2
1
I
1

Operation CPN Layer
for Object1 I

«class» «class»
ObjectiClass Object2Class

receive {n event) update i event)

Operation CPN Layer
ClassModel P Objec2

a) Software Architecture with UML b) Software Architecture with CPN

Fig. 1 Overview of Model Transformation

By consideration of the scalability in the analysfs
the software architecture for a large-scaled saofwa
system, the software architecture is analyzed utiieg
CPN model at the levels of different abstraction of
components. The functionality of software architeetis
analyzed at the (abstract) component level ((&)idr2) in

which the analysis focuses on the interaction betwe

components modeled with less detailed (internajgab
supporting the services provided by the componé&ash
component is a concurrent component, which
communicates with other concurrent components via

the detailed objects, and analyzed with the Compiéne
and Component3 used at the abstract component level

4. M essage Communication for Software

synchronized message communications. Each componenta - chitectur e

in the software architecture with the UML is mapped
(component) transition in the CPN model in whicle th
transition needs to be decomposed into a (leafyngtib
This is because the CPN model should be executabte.
this, the functions provided by each component are
modeled with the minimum number of objects supporti
the functionality, and then the interaction betwdba
components is analyzed in terms of system propertie
such as deadlock. The Componentl, Component2 and
Component3 ((a) in Fig.2) are analyzed at the fabgt
component level.

a) Analysis between Components

«component»
Componentl|

-

«component>
Component3

«component»|
Component2

b) Analysiswithin a Component

«component»|
Componentl

«component»|
Component2

;

«component»
Component3

«object»
:Objectl

«object»
:Object2

gl

{1
«object»
:Object3

«object»
:Object4

Fig. 2 Analysis of Software Architecture

The detailed interaction between objects within a
selected component is analyzed at the (concrete)
component level ((b) of Fig. 2). By consideratioh o
scalability of CPN model analysis, a selected camepo
is modeled with detailed objects supporting the
component whereas the other (not-selected) comp®nen
are not changed as modeled at the abstract comiponen
level (i.e., the not-selected components were ngatel
with the minimal objects at the abstract componevl).
Suppose the Component3 is selected to be analyihed.
services realized by the detailed objects, Objectl,
Object2, Object3 and Object4, for the selected
Component3 ((b) in Fig. 2) are analyzed togethéh wie
Componentl and Component2 that are used at theaebst

component level. When all the services in the
Component3 are analyzed, either Componentl or
Component2 is selected to be analyzed. If the

Componentl is selected, the Componentl is modeitbad w

The concurrent components or objects in the soéwar
architecture communicate with each other in différe
types of message communication, such as synchronous
message communication without reply, synchronous
message communication with reply, or asynchronous
message communication [GomaaO0]. These types of
message communication modeled in the UML notation
are transformed to the corresponding message
communication connectors in the CPN notation.

With synchronous message communication without
reply, a producer sends a message to a consumer and
waits for the consumer to receive the message. When
consumer receives the message, the producer cdnasen
new message to the consumer again. Fig. 3 deiets t
synchronous message communication without replygusi
the UML notation ((3a) of Fig. 3), which is transfeed
into the message buffer connector in the CPN rmtati
((3b) of Fig. 3) [Pettit06]. A producer sends a saEge,
consisting of both data and control, to a consuméren
the consumer receives the message, it returnsathieot
to the producer. With the control, the producer sand a
new message to the consumer.

I Producer Consumer I

(3a) Synchronous Message communication without reply using UML

Operation (in data)

Message Buffer connector

DataSet

CTL et

i1’ (data, ct) 1' (data, ct))

Producer Consumer
el

(3b) Synchronous Message communication without reply using CPN

Fig. 3 Synchronous message communication withqaky re

Synchronous message communication with reply is
used to model a client/server message communication
The producer sends a message to the consumer emd th
waits for a reply from the consumer. Fig. 4 depitts
synchronous message communication with reply usiag
UML notation ((4a) of Fig. 4), which is transforméato
the message and response buffer connector usirgRhie

notation ((4b) of Fig. 4) [Pettit06]. The produsands a
message with a control to the consumer. The consume
replies a response with a control to the produdéénen

the response and control arrive at the producez, th
producer continues to work.

I Producer Consumer I

(4a) Synchronous Message communication with reply using UML

Operation (in data, out response)
—

Message and Response Buffer connector

Consumer

{1 response

Response '
'
Response

(4b) Synchronous Message communication with reply using CPN

Fig. 4 Synchronous message communication with reply

With asynchronous message communication, the
producer sends a message to the consumer andumEmtin
to work. Fig. 5 depicts the asynchronous message
communication using the UML notation ((5a) of F,
which is transformed into the message queue coonect
with size N using the CPN notation ((5b) and (5ckig.

5) [Pettit06]. The producer sends a message, wisich
stored in a queue (size N) when the consumer dogts n
read a message (i.e., control is empty). The predoan
store the next message to the queue until the gadud.
The consumer receives a message from the quebe if t
gueue is not empty.

5. Model Transfor mation for Software
Architecture

The software architecture, modeled using the UML, i
transformed into the hierarchical CPN model. The lUM
communication diagram, referred to as the component
communication diagram (top of left-hand side in.Fig,
is used to model components and their interactioribe
software architecture for a software system. Thagjhm
is transformed into the component communication CPN
layer (top of right-hand side in Fig. 1) in which a
component and an interaction between componerttgein
software architecture model with the UML are mapfeed
a transition and a message communication conndttor
the software architecture model with the CPN,
respectively. The components, Componentl,
Component2, and Component3, in the UML model (Fig.
1) are mapped to the transitions, Componentl,
Component2, and Component3, in the CPN model. Both

the interaction between Componentl and Component3,
and the interaction between Component2 and
Component3 in the UML model are mapped to their
corresponding connectors in the CPN model as well.

| Procuce — |

(5a) Asynchronous Message communication using UML

Operation (in data)
—

Size=N

Message
Queue

Consumer

Message Queue

Size=N

(Queue\

[ct=Not Empty]

| Dequeve

(5¢c) Message Queue Connector

Fig. 5 Asynchronous message communication

Fig. 6 depicts the component communication CPN that
is transformed from the UML component communication
diagram for the software architecture for the Auated
Teller Machine (ATM) system [GomaaOO0], which is
modified for this paper. The ATM system provides a
customer with the three services - withdraw furgisery
the balance, and transfer funds - after validatihg
customer Personal Identification Number (PIN). The
software architecture for the ATM system considtshe

ATM Client and Server components, having the
synchronous message communication between the
components.

A component provides other components with
functional services and/or requires services frahrers.
The functional services of each component are fpdci
in the interfaces of the component (middle of heftad
side in Fig. 1). The component interface diagramtiie
software architecture with the UML is transformeudoi
the component interface CPN layer (middle of rigatd
side in Fig. 1) where a functional service of a poment
is mapped to a transition in the sub-CPN of the
component transition in the component communication
CPN. The Notification is one of Component3 inteefsc
defining the “Notify” service, which is mapped tbet
“Notify” transition in the sub-CPN of the Compon@nt
transition.

CardIDMsg msg

O (GrdReader)
\ T PrmlTFDMsg

DISP
PINMsg (p}——————————— .
= ‘ ‘ ‘ (—»@ PrintOutiisg

QueryMsg (p3 ol
" e
)¢

Py Peis
N
TrancforMen (A » ATM Client w /) RWKCTRL n BankServer
AL 4 Subsystem < . Subsystem
¢ » () bankResponse
VT AAl AA| (a2 X A
E ~ Rl
s | ‘ ‘ | ‘ ‘ RQCTRL H ’ H
A~ I T T\ . bankResponse JIoo
Customer ||
out mCXT
s =
9 ‘ Ll RTXCTRL . ~) ”
| RIS |
\ T e J
RN

Fig. 6 Component Communication CPN for ATM system

Each service in the interface of a component of the
software architecture with the UML is describedrigans
of objects, such as active objects and passivectsbje
accessed by active objects, and the interactiomgrtize
objects. An active object has its own thread ofticdn
while a passive object has no thread of controlwith

represented using the UML communication diagram
(middle of left-hand side in Fig. 1), referred te the
object communication diagram, which is transforrired
the object communication CPN layer (middle of right
hand side in Fig. 1). The “Notify” service in the
Notification interface is realized by the Objecthda
Object2, which are mapped to the Objectl and Object
transitions in the object communication CPN layEne
interaction between Objectl and Object2 is tramséor
into the message communication connector in the sub
CPN of the “Notify” transition.

At the abstract component level, the services plexvi
by components are modeled with the minimal number o
objects, whereas, at the concrete component l¢lel,
services provided by a component selected to blyzath
in detail are modeled with the detailed objectsisTdims
at reducing the complexity of analysis of the CPhidei
for the software architecture. Fig. 7 depicts thgeot
communication CPN transformed from detailed objects
supporting the Validate PIN Service in the ATM @lie
component. This service is supported by three activ
objects such as Card Reader Interface, Customer
Interface, and ATM Controller, and two passive ifght

the interaction between components, active objects objects such as ATM Card and ATM Transaction entity

communicate with each other via the synchronization
mechanism. The collaboration among objects for a
functional service of an interface of a componest i

objects.

Il ATMCard Il

e

/T

GetPIN

ASYNC Msg
Connector

DisplayMenu
ASYNC Msg
Connector

DispMenuMsg

DisplayCardEjected
ASYNC Msg
Connector

UCIMsg

»63>
g g

ATMTransaction

Fig. 7 Detailed Object Communication CPN for Vat@®IN Service in ATM Client Component

Fig. 8 depicts the object communication CPN
transformed from the minimal number of objects +dCa
Reader Interface and Customer Interface - for thkddte
PIN Service in the ATM client component. The ATM
card ID and transaction information are storeddfliyeto
the corresponding places in the CPN model (Fig.n8j,
through the ATM Card and ATM Transaction passive
objects (Fig. 7). The ATM Controller object in Fig.is
removed in Fig. 8 by coordinating the executionusege
between the Card Reader Interface and Customel
Interface transitions using the data object (toker@ard
ID.

I |
‘ Interface ”
e

—~ Ircarareader

N

Cardl

=}

Msg
1sg

e

mszf\
’AJ%
63 nl[Customer o
= Interface 33 RPVXCTRL
PINMsg
g CXT

4
333 cardID
pe

accm@‘/

37 bankResponse

Fig. 8 Abstract Object Communication CPN for Vat&la
PIN Service in ATM Client Components

An object in the object communication model is
instantiated from a class in the class model (bbottdf
left-hand side in Fig. 1), which defines the opiers
provided by an object (class). When a receiver aibje
receives a message from a sender object, an aperati
the receiver object is called so that the objeccesses
the message. The class model for the softwaretacothie
with the UML is transformed into the operation CRijer
(bottom of right-hand side in Fig. 1) in which apevation
of an object (instantiated from a class) is mapted
transition in the sub-CPN of a transition in thejeab
communication CPN. When the Object2 receives a
message from the Objectl in Fig. 1, the “update”
operation of Object2 is called. The “update” opierats
mapped to the “update” transition in the sub-CPNhef
Object2 transition.

6. Analysis of Software Architecture

the ATM system. The state space report, (a) of idnas
been generated from the software architecture reddel
using the client and server components in whichh bot
client and server components are modeled with the
detailed objects. On the other hand, in the stpgees
report, (b) of Fig. 9, the client component is medewith

the detailed objects, while the server component is
modeled with the minimal objects i.e., abstracteobj
communication diagram.

Statistics Statistics

State Space
Nodes: 150155
Arcs: 289266
Secs: 1485
Status: Full

State Space
Nodes: 23198
Arcs: 137565
Secs: 1200
Status: Full

Scc Graph
Nodes: 23198
Arcs: 137565
Secs: 20

Scc Graph
Nodes: 150155
Arcs: 289266
Secs: 35

Home Properties Home Properties

Home Markings
Initial Marking is not a home marking

Home Markings
Initial Marking is not a home marking

Liveness Properties Liveness Properties

Dead Markings
[150155]

Dead Markings
[23198]

Fairness Properties Fairness Properties

No infinite occurrence sequences. No infinite occurrence sequences.

(b) State space report for concrete ATM client and

(a) State space report for concrete ATM client
abstract ATM server components

and ATM server components

Fig. 9. State Space Report for ATM System

From the statistics it can be seen that the ocooere
graph in (b) of Fig. 9 takes less time in analydighe
model than that in (a) of Fig. 9. The former had 23
states in the state space report and the latted B@%55
states. More states in a CPN model means thakédista
more time in analysis. However, the effects of gsialin
both approaches are the same. In (b) of Fig. 9, the
software architecture is analyzed using all abstrac
components, that is, abstract client and servempooents
first, and then each concrete component is analyzed
turn in detail.

The state space reports also show other analysks su
as Home properties, Liveness properties, Fairness
properties, and even other customized queriesctrate
defined using ML functions [Jensen02].

7. Conclusions

This paper has described the model transformatfon o
the software architecture with the UML to the
corresponding CPN model, which can be used to aealy
the dynamic properties of large-scale systems.rdieroto
analyze the CPN models for large-scale application
systems within a reasonable time, the software

The state space reports (Fig. 9) are generatedhéby t architecture for a system, modeled in the UML, is
CPNTools [CPNToo0Is07] using the occurrence graph of transformed into the hierarchical CPN model stredu
the CPN model for the PIN validation and withdrawds into the component communication CPN layer,
service provided by the client and server compaént component interface CPN layer, object communication

CPN layer, and operation CPN layer. The software [Jensen02] Kurt Jensen, Sgren Christensen, and Mars

architecture for a system is analyzed using the GNel

at the levels of different abstraction of composest as

to reduce the complexity of the analysis of the CPN
model.

This research has the future work. The approach

suggested in this paper needs to be validated miite
application systems. Currently this approach hasnbe
applied to the ATM system. Also this approach can b
extended to tool support for the model transforomati

Kristensen, “CPN Tools State Space Manual,” Unitgrs
of Aarhus, Aarhus N, Denmark, 2002.

[Kristensen98] Lars M. Kristensen, Soren Christense
and Kurt Jensen, “The practitioner’s guide to cetbPetri
nets,” Internaltion Journal STTT, Vol.2, pages &1
1998.

[Pettit00] R. Pettit and H. Gomaa, "Validation of
Dynamic Behavior in UML Using Colored Petri Nets",

The UML-based software architecture model may be Proc. Workshop on Dynamic Behaviour in UML Models:

captured using a CASE tool such as Rational RoseSemantic Questions,

[Rose05], while the corresponding CPN model is
described using the CPNTools [CPNTo0Is07]. In tha t

support, the UML model represented using a CASE too

needs to be automatically mapped to the CPN model

described using the CPNTools.

References

[Baresi97] L. Baresi, A. Orso, and M. Pezzé, “ldinoing
Formal Specification Methods in Industrial Pracfickn

Proceedings of the 1997 International Conference ON[Rose05]

Software Engineering, pages 56-66, ACM Press, Bosto
(USA), May 1997.

UML 2000 Conference, York,
England, October 2000.

[Pettit04] R. Pettit IV and H. Gomaa, “Modeling
Behavioral Patterns of Concurrent Software Architeses
Using Petri Nets"Working | EEE Conference on Software
Architectures (WICSA) 2004, Oslo, Norway, June 2004.

[Pettit06] R. Pettit IV and H. Gomaa, “Modeling
Behavioral Design Patterns of Concurrent Objed®stc.
28" International Conference on Software Engineering
(ICSE), Shanghai, China, May 2006.

Rose,
306.ibm.com/software/awdtools/developer/rose/,
2005.

http:/Amww-
IBM,

[Booch05] G. Booch, J. Rumbaugh, I. Jacobson, “The [Rumbaugh05] J. Rumbaugh, G. Booch, I. Jacobsone “T

Unified Modeling Language User Guide”, Second

Edition, Addison Wesley, Reading MA, 2005.

[Buschmann96] F. Buschmann, R. Meunier, H.
Rohnert, P. Sommerlad, "Pattern Oriented Software
Architecture: A System of Patterns,” John Wiley &
Sons, 1996.

[CPNTo0Is07] http://www.daimi.au.dk/cpntools
“CPNTools on-line,” 2007.
[DesignCPNO04] http://www.daimi.au.dk/designCEN

“Design/CPN on-line,” 2004.

[ElkoutbiO0] Mohammed Elkoutbi and Rudolf K. Keller
“User Interface Prototyping based on UML Scenasind
High-level Petri Nets,” 21st International Confecenon
Application and Theory of Petri Nets, Aarhus, Derkna
June 26-30, 2000.

[Elkoutbi98] Mohammed Elkoutbi and Rudolf K. Keller
“Modeling Interactive Systems with Hierarchical Gadd
Petri Nets,” Advanced Simulation Technologies
Conference, Boston Park Plaza Hotel, April 5-9, USA
1998.

[Gomaa00] Hassan Gomaa, “Designing Concurrent,
Distributed, and Real-Time Applications with UML,”
Addison-Wesley, 2000.

Unified Modeling Language Reference Manual,” Second
Edition, Addison Wesley, Reading MA, 2005.

[Saldhana00] John Anil Saldhana and Sol M. Shatz,
“UML Diagrams to Object Petri Net Models: An
Approach for Modeling and Analysis,” Proceedingghef

Int. Conference on Software Engineering and Knogded
Engineering (SEKE), Chicago, July 2000.

[SaldhanaOl1] J. Saldhana, S. M. Shatz, and Z. Hu,
"Formalization of Object Behavior and Interactidfrom
UML Models," International Journal of Software
Engineering and Knowledge Engineering (IJSEKE), Vol.

11, No. 6, pp. 643-673, Dec. 2001.

[Selic94] B. Selic, G. Gullekson, and P. T. WarReal-
Time Object-Oriented Modeling,” John Wiley & Sons,
1994.

[Shaw96] M. Shaw and D. Garlan, “Software
Architecture: Perspectives on an Emerging Discilin
Prentice Hall, 1996.

[Shin05] M. Shin, A. Levis, L. Wagenhals, and
D. Kim, “Analyzing Dynamic Behavior of
Large-Scale System through Model
Transformation,” International Journal of
Software Engineering and Knowledge
Engineering, Vol. 15, No. 1, 2005, pp. 35-60.

